skip to main content


Search for: All records

Creators/Authors contains: "Colle, Brian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Coastal urban areas like New York City (NYC) are more vulnerable to urban pluvial flooding particularly because the rapid runoff from extreme rainfall events can be further compounded by the co-occurrence of high sea-level conditions either from tide or storm surge leading to compound flooding events. Present-day urban pluvial flooding is a significant challenge for NYC and this challenge is expected to become more severe with the greater frequency and intensity of storms and sea-level rise (SLR) in the future. In this study, we advance NYC’s assessment of present and future exposure to urban pluvial flooding through simulating various storm scenarios using a citywide hydrologic and hydraulic model. This is the first citywide analysis using NYC’s drainage models focusing on rainfall-induced flooding. We showed that the city’s stormwater system is highly vulnerable to high-intensity short-duration “cloudburst” events, with the extent and volume of flooding being the largest during these events. We further showed that rainfall events coupled with higher sea-level conditions, either from SLR or storm surge, could significantly increase the volume and extent of flooding in the city. We also assessed flood exposure in terms of the number of buildings and length of roads exposed to flooding as well as the number of the affected population. This study informs NYC’s residents of their current and future flood risk and enables the development of tailored solutions to manage increasing flood risk in the city.

     
    more » « less
  2. Abstract

    Nested idealized baroclinic wave simulations at 4-km and 800-m grid spacing are used to analyze the precipitation structures and their evolution in the comma head of a developing extratropical cyclone. After the cyclone spins up by hour 120, snow multibands develop within a wedge-shaped region east of the near-surface low center within a region of 700–500-hPa potential and conditional instability. The cells deepen and elongate northeastward as they propagate north. There is also an increase in 600–500-hPa southwesterly vertical wind shear prior to band development. The system stops producing bands 12 h later as the differential moisture advection weakens, and the instability is depleted by the convection. Sensitivity experiments are run in which the initial stability and horizontal temperature gradient of the baroclinic wave are adjusted by 5%–10%. A 10% decrease in initial instability results in less than half the control run potential instability by 120 h and the cyclone fails to produce multibands. Meanwhile, a 5% decrease in instability delays the development of multibands by 18 h. Meanwhile, decreasing the initial horizontal temperature gradient by 10% delays the growth of vertical shear and instability, corresponding to multibands developing 12–18 h later. Conversely, increasing the horizontal temperature gradient by 10% corresponds to greater vertical shear, resulting in more prolific multiband activity developing ∼12 h earlier. Overall, the relatively large changes in band characteristics over a ∼12-h period (120–133 h) and band evolutions for the sensitivity experiments highlight the potential predictability challenges.

    Significance Statement

    Multiple-banded precipitation structures are difficult to predict and can greatly impact snowfall forecasts. This study investigates the precipitation bands in the comma head of a low pressure system in a numerical model to systematically isolate the roles of different ambient conditions. The results emphasize that environments with instability (e.g., air free to rise after small upward displacement) and increasing winds with height favor the development of banded structures. The forecast challenge for these bands is illustrated by starting the model with relatively small changes in the temperature field. Decreasing the instability by 10% suppresses band development, while increasing (decreasing) the horizontal temperature change across the system by 10% corresponds to the bands developing 12 h earlier (later).

     
    more » « less
  3. Free, publicly-accessible full text available November 1, 2024
  4. Abstract

    Limited knowledge exists about ∼100-m-scale precipitation processes within U.S. northeast coastal snowstorms because of a lack of high-resolution observations. We investigate characteristics of microscale updraft regions within the cyclone comma head and their relationships with snowbands, wind shear, frontogenesis, and vertical mass flux using high-spatiotemporal-resolution vertically pointing Ka-band radar measurements, soundings, and reanalysis data for four snowstorms observed at Stony Brook, New York. Updraft regions are defined as contiguous time–height plotted areas with upward Doppler velocity without hydrometeor sedimentation that is equal to or greater than 0.4 m s−1. Most updraft regions in the time–height data occur on a time scale of seconds (<20 s), which is equivalent to spatial scales < 500 m. These small updraft regions within cloud echo occur more than 30% of the time for three of the four cases and 18% for the other case. They are found at all altitudes and can occur with or without frontogenesis and with or without snowbands. The updraft regions with relatively large Doppler spectrum width (>0.4 m s−1) occur more frequently within midlevels of the storms, where there are strong wind shear layers and moist shear instability layers. This suggests that the dominant forcing for the updrafts appears to be turbulence associated with the vertical shear instability. The updraft regions can be responsible for upward mass flux when they are closer together in space and time. The higher values of column mean upward mass flux often occur during snowband periods.

    Significance Statement

    Small-scale (<500 m) upward motions within four snowstorms along the U.S. northeast coast are analyzed for the first time using high-spatiotemporal-resolution millimeter-wavelength cloud radar pointed vertically. The analysis reveals that updrafts appear in the storms regardless of whether snowbands are present or whether there is larger-scale forcing for ascent. The more turbulent and stronger updrafts frequently occur in midlevels of storms associated with instability from vertical shear and contribute to upward mass flux during snowband periods when they are closer together in space and time.

     
    more » « less
  5. Abstract Many factors shape public perceptions of extreme weather risk; understanding these factors is important to encourage preparedness. This article describes a novel workshop designed to encourage individual and community decision-making about predicted storm surge flooding. Over 160 U.S. college students participated in this 4-h experience. Distinctive features included 1) two kinds of visualizations, standard weather forecasting graphics versus 3D computer graphics visualization; 2) narrative about a fictitious storm, role-play, and guided discussion of participants’ concerns; and 3) use of an “ethical matrix,” a collective decision-making tool that elicits diverse perspectives based on the lived experiences of diverse stakeholders. Participants experienced a narrative about a hurricane with potential for devastating storm surge flooding on a fictitious coastal college campus. They answered survey questions before, at key points during, and after the narrative, interspersed with forecasts leading to predicted storm landfall. During facilitated breakout groups, participants role-played characters and filled out an ethical matrix. Discussing the matrix encouraged consideration of circumstances impacting evacuation decisions. Participants’ comments suggest several components may have influenced perceptions of personal risk, risks to others, the importance of monitoring weather, and preparing for emergencies. Surprisingly, no differences between the standard forecast graphics versus the immersive, hyperlocal visualizations were detected. Overall, participants’ comments indicate the workshop increased appreciation of others’ evacuation and preparation challenges. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  6. Abstract

    The synoptic evolution and mechanisms for the largest medium-range (72–120 h) along-track errors of tropical cyclones (TC) are investigated. The mean along-track errors (ATEs) of the 51-member European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble are evaluated for 393 forecasts (85 TCs) during the 2008 to 2016 North Atlantic seasons. The 27 unique forecasts within the upper quintile of most negative ATEs (i.e., slow bias greater than 500 km by 72 h) are inherently fast-moving TCs that undergo extratropical transition as they recurve and interact with a 300-hPa upstream trough and a downstream ridge. Both the trough and ridge are underamplified by only 5–10 m ~60 h before the time of largest ATE. The height errors then grow rapidly due to underpredicted 300–200-hPa potential vorticity advection by both the nondivergent wind and the irrotational wind from the TC’s outflow. Both wind components are underpredicted and result in weak biases in the trough’s developing potential vorticity gradient and associated jet streak. The underamplification of the upstream trough is exacerbated by underpredicted 700-hPa cold advection extending from beneath the trough into the TC at 48–36 h before the largest ATE. Standardized differences are consistent with the mean errors and reveal that weaker divergent outflow is driven by underpredicted near-TC precipitation, which corresponds to underpredicted 700-hPa moisture fluxes near the TC at ~108 h before the largest ATE. The ensemble member ATEs at 72–120 h generally show little correlation with their ATEs before 36 h, suggesting that initial position uncertainty is not the primary source of ATE variability later in the forecast.

     
    more » « less
  7. Abstract

    This paper investigates the relationship between long‐term trends (1980–2017) in intensity and wind evolution for tropical cyclones (TCs) within the western tropical Atlantic (WTA) and central/eastern tropical Atlantic (CETA) subbasins. Long‐term TC trends in intensity, intensification time, and wind variability for the CETA were generally more significant than, and in some cases opposite to, those for the WTA. Both the TC intensity levels, as measured by the power dissipation index normalized by storm hours and proportion of rapid intensification intervals (defined as a 12‐hr wind speed increase of 20 kt or more), exhibit no long‐term trends in either subbasin. A TC wind variability index (WVI) calculated over 72‐hr intervals of the TC lifecycle decreases for the WTA over the decades, while the CETA has the 72‐hr intervals with the greatest wind speed fluctuations. The average period of intensification before the peak in TC intensity increases ~0.97 hr/year for the CETA. TC maximum intensity exhibits no trend, suggesting that TCs in the tropical North Atlantic have a trend favoring a longer intensification period to reach their lifetime maximum intensity. A correlation analysis suggests that warmer sea surface temperatures and greater moisture favor longer intensification and greater WVI. In contrast, greater 850‐ to 200‐hPa vertical wind shear is associated with shorter intensification periods and less WVI.

     
    more » « less
  8. Abstract

    This paper investigates the ability of the Weather Research and Forecasting (WRF) Model in simulating multiple small-scale precipitation bands (multibands) within the extratropical cyclone comma head using four winter storm cases from 2014 to 2017. Using the model output, some physical processes are explored to investigate band prediction. A 40-member WRF ensemble was constructed down to 2-km grid spacing over the Northeast United States using different physics, stochastic physics perturbations, different initial/boundary conditions from the first five perturbed members of the Global Forecast System (GFS) Ensemble Reforecast (GEFSR), and a stochastic kinetic energy backscatter scheme (SKEBS). It was found that 2-km grid spacing is adequate to resolve most snowbands. A feature-based verification is applied to hourly WRF reflectivity fields from each ensemble member and the WSR-88D radar reflectivity at 2-km height above sea level. The Method for Object-Based Diagnostic Evaluation (MODE) tool is used for identifying multibands, which are defined as two or more bands that are 5–20 km in width and that also exhibit a >2:1 aspect ratio. The WRF underpredicts the number of multibands and has a slight eastward position bias. There is no significant difference in frontogenetical forcing, vertical stability, moisture, and vertical shear between the banded versus nonbanded members. Underpredicted band members tend to have slightly stronger frontogenesis than observed, which may be consolidating the bands, but overall there is no clear linkage in ambient condition errors and band errors, thus leaving the source for the band underprediction motivation for future work.

     
    more » « less